
On Coinduction and Quantum Lambda Calculi

Yuxin Deng

East China Normal University

(Joint work with Yuan Feng and Ugo Dal Lago)

To appear at CONCUR’15

1



Outline

• Motivation

• A quantum λ-calculus

• Coinductive proof techniques

• Soundness

• Completeness

• Summary

2



Motivation
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Quantum programming languages

Fruitful attempts of language design, e.g.

• QUIPPER: an expressive functional higher-order language that can be

used to program many quantum algorithms and can generate quantum

gate representations using trillions of gates. [Green et al. PLDI’13]

• LIQUi|〉: a modular software architecture designed to control quantum

hardware - it enables easy programming, compilation, and simulation

of quantum algorithms and circuits. [Wecker and Svore. CoRR 2014]

Open problem: Fully abstract denotational semantics wrt operational

semantics
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Contextual equivalence

An important notion of program equivalence in programming languages.

M ≃ N if ∀C : C[M ] ⇓ ⇔ C[N ] ⇓
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An example in linear PCF

f1 := val(λx . val(0) ⊓ val(1))

f2 := val(λx . val(0)) ⊓ val(λx . val(1)).

[Deng and Zhang, TCS, 2015]
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An example

f1 := val(λx . val(0) ⊓ val(1))

f2 := val(λx . val(0)) ⊓ val(λx . val(1)).

f1 6≃ f2

C := bind f = [ ] in bind x = f(0) in bind y = f(0) in val(x = y).
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Linear context?

f1 := val(λx . val(0) ⊓ val(1))

f2 := val(λx . val(0)) ⊓ val(λx . val(1)).

Equivalence under linear contexts.
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A Quantum λ-Calculus
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Types

A,B,C ::= qubit | A⊸ B | !(A⊸ B) | 1 | A⊗B | A⊕B | Al
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Terms

M,N,P ::= x Variables

| λxA .M | M N Abstractions / applications

| skip | M ;N Skip / seq. compositions

| M ⊗N | let xA ⊗ yB = M in N Tensor products / proj.

| inl M | inr M Sums

| match P with (xA : M | yB : N) Matches

| split
A Split

| letrec fA⊸Bx = M in N Recursions

| new | meas | U Quantum operators
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Values

V,W ::= x | c | λxA.M | V ⊗W | inl V | inr W

where c ∈ {skip, splitA, meas, new, U}.

As syntactic sugar bit = 1⊕ 1, tt = inr skip, and ff = inl skip.
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Typing rules

A linear

!∆, x : A ⊢ x : A !∆, x : !(A⊸ B) ⊢ x : A⊸ B

∆, x : A ⊢ M : B

∆ ⊢ λxA.M : A⊸ B

!∆,∆′ ⊢ M : A⊸ B !∆,∆′′ ⊢ N : A

!∆,∆′,∆′′ ⊢ MN : B

!∆,∆′ ⊢ M : A

!∆,∆′ ⊢ inl M : A⊕B

!∆,∆′ ⊢ M : B

!∆,∆′ ⊢ inr M : A⊕B

!∆,∆′ ⊢ P : A⊕B !∆,∆′′, x : A ⊢ M : C !∆,∆′′, y : B ⊢ N : C

!∆,∆′,∆′′ ⊢ match P with (xA : M | yB : N) : C

!∆, f : !(A⊸ B), x : A ⊢ M : B !∆,∆′, f : !(A⊸ B) ⊢ N : C

!∆,∆′ ⊢ letrec fA⊸Bx = M in N : C

!∆ ⊢ new : bit⊸ qubit !∆ ⊢ meas : qubit⊸ bit

U of arity n

!∆ ⊢ U : qubit⊗n
⊸ qubit

⊗n
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Quantum closure

Def. A quantum closure is a triple [q, l,M ] where

• q is a normalized vector of C2n

, for some integer n ≥ 0. It is called the

quantum state;

• M is a term, not necessarily closed;

• l is a linking function that is an injective map from fqv(M) to the set

{1, . . . , n}.

A closure [q, l,M ] is total if l is surjective. In that case we write l as

〈x1, . . . , xn〉 if dom(l) = {x1, . . . , xn} and l(xi) = i for all i ∈ {1 . . . n}.

Non-total closures are allowed. E.g. [ |00〉+|11〉√
2

, {x 7→ 1}, x]
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Small-step reduction axioms

[q, l, (λxA.M)V ]
1

 [q, l, M{V/x}]

[q, l, let xA ⊗ yB = V ⊗W in N ]
1

 [q, l, N{V/x,W/y}]

[q, l, skip;N ]
1

 [q, l, N ]

[q, l, match inl V with (xA : M | yB : N)]
1

 [q, l, M{V/x}]

[q, l, match inr V with (xA : M | yB : N)]
1

 [q, l, N{V/y}]

[q, l, letrec fA⊸Bx = M in N ]
1

 [q, l, N{(λxA.letrec fA⊸Bx = M in M)/f}]

[q, ∅, new ff]
1

 [q ⊗ |0〉, {x 7→ n+ 1}, x]

[q, ∅, new tt]
1

 [q ⊗ |1〉, {x 7→ n+ 1}, x]

[αq0 + βq1, {x 7→ i}, meas x]
|α|2

 [r0, ∅, ff]

[αq0 + βq1, {x 7→ i}, meas x]
|β|2

 [r1, ∅, tt]

[q, l, U(x1 ⊗ · · · ⊗ xk)]
1

 [r, l, (x1 ⊗ · · · ⊗ xk)]
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Structural rule

[q, l, M ]
p
 [r, i, N ]

[q, j ⊎ l, E [M ]]
p
 [r, j ⊎ i, E [N ]]

where E is any evaluation context generated by the grammar

E ::= [ ] | E M | V E | E ;M | E ⊗M | V ⊗ E | inl E | inr E

| let xA ⊗ yB = E in M | match E with (xA : M | yB : N).
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Extreme derivative

Def. Suppose we have subdistributions µ, µ→
k , µ×

k for k ≥ 0 with the

following properties:

µ = µ→
0 + µ×

0

µ→
0 → µ→

1 + µ×
1

µ→
1 → µ→

2 + µ×
2

...

and each µ×
k is stable in the sense that C 6 , for all C ∈ ⌈µ×

k ⌉. Then we

call µ′ :=
∑∞

k=0 µ
×
k an extreme derivative of µ, and write µ ⇒ µ′.

NB: µ′ could be a proper subdistribution.
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Example

Consider a Markov chain with three states {s1, s2, s3} and two transitions

s1 → 1
2s2 +

1
2s3 and s3 → s3. Then s1 ⇒ 1

2s2.

Let C be a quantum closure in the Markov chain (Cl ,→). Then C ⇒ [[C]]

for a unique subdistribution [[C]].
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Big-step reduction

C ⇓ ε [q, l, V ] ⇓ [q, l, V ]

[q, l,M ] ⇓
∑

k∈K

pk · [rk, ik, Vk] {[rk, ik, N ] ⇓ µk}k∈K

[q, l,M ⊗N ] ⇓
∑

k∈K

pk(Vk ⊗ µk)

[q, l,M ] ⇓
∑

k∈K

pk · [rk, ik, Vk ⊗Wk] {[rk, ik, (N{Vk/x,Wk/y})] ⇓ µk}k∈K

[q, l, let xA ⊗ yB = M in N ] ⇓
∑

k∈K

pkµk

Lem. [[C]] = sup{µ | C ⇓ µ}
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Linear contextual equivalence

Def. A linear context is a term with a hole, written C(∆;A), such that

C[M ] is a closed program when the hole is filled in by a term M , where

∆⊲M : A, and the hole lies in linear position.

Def. Linear contextual equivalence is the typed relation ≃ given by

∆⊲M ≃ N : A if for every linear context C, quantum state q and linking

function l such that ∅⊲ C(∆;A) : B, and both [q, l, C[M ]] and [q, l, C[N ]]

are total quantum closures,

|[[[q, l, C[M ]]]]| = |[[[q, l, C[N ]]]]|
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Coinductive proof techniques
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A Probabilistic Labelled Transition System

[q, l, x1 ⊗ · · · ⊗ xn]
i U
−−→ [q, l, U(x1 ⊗ · · · ⊗ xn)] [q, l, x]

i meas
−−−−→ [q, l, meas x]

[q, ∅, skip]
skip
−−−→ [q, ∅,ΩΩΩ]

∅⊲ V : A⊸ B ∅⊲W : A

[q, l, V ]
@[r,W ]
−−−−−→ [q, l ⊎ r, V W ]

∅⊲ inl V : A⊕ B x : A⊲M : C

[q, l, inl V ]
l [r,M ]
−−−−−→ [q, l ⊎ r,M{V/x}]

∅⊲ V ⊗W : A⊗B x : A, y : B ⊲M : C

[q, l, V ⊗W ]
⊗[r,M ]
−−−−−→ [l ⊎ r,M{V/x,W/y}] C

eval
−−−→ [[C]]
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Lifting relations

Def. Let S, T be two countable sets and R ⊆ S × T be a binary relation.

The lifted relation R†⊆ D(S)×D(T ) is defined by letting µ R† ν iff

µ(X) ≤ ν(R(X)) for all X ⊆ S.

Here R(X) = {t ∈ T | ∃s ∈ X. s R t} and µ(X) =
∑

s∈X µ(s).

There are alternative formulations; related to the Kantorovich metric and the

maximum network flow problem. See e.g.

23



State-based bisimilarity

Def. C ∼s D iff

• env(C) = env(D);

• [[C]] ∼s
† [[D]];

• if C,D are values then C
a
−→ µ implies D

a
−→ ν with µ ∼s

† ν, and

vice-versa.

Write ∅⊲M ∼s N : A if [q, l,M ] ∼s [q, l, N ] for any q and l such that

[q, l,M ] and [q, l, N ] are both typable quantum closures.

env(µ) =
∑

i pi · trfqv(M)qiq
†
i for any µ =

∑
i pi · [qi, li,Mi].
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Distribution-based bisimilarity

Def. µ
a
−→ ρ if ρ =

∑
s∈⌈µ⌉ µ(s) · µs, where µs is determined as follows:

• either s
a
−→ µs

• or there is no ν with s
a
−→ ν, and in this case we set µs = ε.

Def. µ ∼d ν iff

• env(µ) = env(ν);

• [[µ]] ∼d [[ν]];

• if µ and ν are value distributions and µ
a
−→ ρ, then ν

a
−→ ξ for some ξ

with ρ ∼d ξ, and vice-versa.

Write ∅⊲M ∼d N : A if [[[q, l,M ]]] ∼d [[[q, l, N ]]] for any q and l such that

[q, l,M ] and [q, l, N ] are quantum closures.
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∼s is finer than ∼d

s

s1

s2 s3

s4

t

t1 t2

t3 t4

t5

a

b

1
2

1
2

c d

a

1
2

1
2

b b

c d

s 6∼s t
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Similar behaviour by quantum closures

[∅, ∅, (λxy.meas(H(new ff)))x]

[∅, ∅, λy.meas(H(new ff))]

[∅, ∅, meas(H(new ff))]

[∅, ∅, ff] [∅, ∅, tt]

[∅, ∅,ΩΩΩ]

[ |00〉+|11〉√
2

, 〈x1x2〉, (λxy.meas x1)(meas x2)]

[|0〉, 〈x1〉, λy.meas x1] [|1〉, 〈x1〉, λy.meas x1]

[|0〉, 〈x1〉, meas x1] [|1〉, 〈x1〉, meas x1]

[∅, ∅, ff] [∅, ∅, tt]

[∅, ∅,ΩΩΩ]

eval

@[∅, V ]

eval

1
2

1
2

ff tt

eval

1
2

1
2

@[∅, V ] @[∅, V ]

eval eval

ff tt
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Soundness
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Congruence

Basic idea: Given a relation R, construct a congruence candidate RH ,

and then show R=RH .
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Howe’s construction

∆, x : A⊲ [q, l,M ] RH [r, j,N ] ∆⊲ [r, j, λxA.N ] R [p, i, L]

∆⊲ [q, l, λxA.M ] RH [p, i, L]

!∆,∆′
⊲ [q, l,M ] RH [r, j,N ]

!∆,∆′′
⊲ [q, i, L] RH [r,m, P ]

!∆,∆′,∆′′
⊲ [r, j ⊎m,NP ] R [s, n,Q]

!∆,∆′,∆′′
⊲ [q, l ⊎ i,ML] RH [s, n,Q]

!∆,∆′
⊲ [q, l,M ] RH [r, j,N ]

!∆,∆′′
⊲ [q, i, L] RH [r,m, P ]

!∆,∆′,∆′′
⊲ [r, j ⊎m,N ⊗ P ] R [s, n,Q]

!∆,∆′,∆′′
⊲ [q, l ⊎ i,M ⊗ L] RH [s, n,Q]
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Congruence

Lem. If ∅⊲ [q, l,M ] ∼s
H [r, j,N ] then [[[q, l,M ]]] (∼s

H)
†
[[[r, j,N ]]].

Lem. If ∅⊲ [q, l, V ] ∼s
H [r, j,W ] then we have that [q, l, V ]

a
−→ µ implies

[r, j,W ]
a
−→ ν and µ (∼s

H)
†
ν.

Consequently, ∼s =∼s
H . Similar arguments apply to ∼d.
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Soundness

Thm. Both ∼s and ∼d are included in ≃.

32



Completeness
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A simple testing language

The tests: t ::= ω | a · t

Apply a test to a distribution in a reactive pLTS

Pr(µ, ω) = |µ|

Pr(µ, a · t) = Pr(ρ, t) where µ
a
−→ ρ

µ =T ν iff ∀t ∈ T : Pr(µ, t) = Pr(ν, t).
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Characterisation of ∼d by tests

Thm. Let µ and ν be two distributions in a reactive pLTS. Then µ ∼d ν if

and only if µ =T ν.
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Converting a test into a context

Lem. Let A be a type and t a test. There is a context CA
t such that

∅⊲ CA
t (∅;A) : bit and for every M with ∅⊲M : A, we have

Pr([q, l,M ], t) = |[[[q, l, CA
t [M ]]]]|

where [q, l,M ] and [q, l, CA
t [M ]] are quantum closures for any q and l.
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Full abstraction

Thm. ≃ coincides with ∼d.
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Summary
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Conclusion

• Two notions of bisimilarity for reasoning about higher-order quantum

programs

• Both bisimilarities are sound with respect to the linear contextual

equivalence

• The distribution-based one is complete.
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Future work

A denotational model fully abstract with respect to the linear contextual

equivalence.
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Thank you!
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