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\ Motivation I



Quantum programming languages

Fruitful attempts of language design, e.g.

e QUIPPER: an expressive functional higher-order language that can be
used to program many quantum algorithms and can generate quantum

gate representations using trillions of gates. [Green et al. PLDI'13]

e LIQUi|): a modular software architecture designed to control quantum
hardware - it enables easy programming, compilation, and simulation

of quantum algorithms and circuits. [Wecker and Svore. CoRR, 2014]

Open problem: Fully abstract denotational semantics wrt operational

semantics



Contextual equivalence

An important notion of program equivalence in programming languages.
M~ NifVvC:CM|| < C[N]|



An example in linear PCF

fi = wval(Az.val(0)r val(l))
fo = wval(Azr.val(0)) N val(Ax.val(l)).

[Deng and Zhang, TCS, 2015]



An example

fi = wval(Az.val(0) M val(l))
fo = wval(Az.val(0)) M val(Ax.val(l)).
f1# fo

C :=bind f =[] in bind x = f(0) in bind y = f(0) in val(x = y).



Linear context?

fi = val(Az.val(0) M val(l))
fo = wval(Az.val(0)) M val(Ax.val(l)).

Equivalence under linear contexts.



‘A Quantum )\—Calculusl



Types

!
A,B,C :=qubit| A—-B|!/(A—-B)|1|AB|A®B| A

10



M,N, P

Terms

xr
Az M | M N
skip | M; N

M®N |let 2 ®@y® =M in N
ing M | in, M

match P with (z*: M | y® : N)
splitA

letrec fA™Bx =M in N

new | meas | U
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Variables

Abstractions / applications
Skip / seq. compositions
Tensor products / proj.
Sums

Matches

Split

Recursions

Quantum operators



Values

VIWWie=z|c| X M| VQW |in V | in, W

where ¢ € {skip, split*, meas,new, U}.

As syntactic sugar bit =1@® 1, tt = in, skip, and ff = in; skip.

12



Typing rules

A linear

IAz:AbFz: A N,z :!(A—-B)Fz:A—B

Ax:A+M:B IANA'FM:A—-B IAJA'FN:A
A z*M:A—B IA,A' A"+ MN : B
IAA'FM: A IAA'FM: B

IAJA'Fing M : A® B IAA'Fin. M : A& B
IANAFP:AeoB AN z:A-M:C AN, y:BFN:C
IA,A’, A" - match P with (z* : M |y® : N): C
IA, f:N(A—-<B)z:A-M:B AA,f:(A—-B)FN:C
IA, A"+ letrec f4 P2z =M in N: C

U of arity n

A F new : bit — qubit A F meas : qubit —o bit IA F U : qubit®” —o qubit®”
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Quantum closure

Def. A quantum closure is a triple ¢, [, M| where

e ¢ is a normalized vector of C2", for some integer n > 0. It is called the

quantum state;
e /[ is a term, not necessarily closed;

e [ is a linking function that is an injective map from fqu(M) to the set
{1,...,n}.

A closure [q, [, M] is total if [ is surjective. In that case we write [ as
(x1,...,xp) if dom(l) ={x1,...,2,} and l(z;) =i for all i € {1...n}.

Non-total closures are allowed. E.g. [|OO>+|11 {z — 1}, 2]
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Small-step reduction axioms

4, 1, Qa? M)V] = g, 1, M{V/a}]

q, 1, let 2 @y® =V @ W in N] SR lq, 1, N{V/x,W/y}]

q, [, skip; N] > (q, I, N]

¢, |, match in; V with (2 : M | y® : N)] ~ [q, I, M{V/z}]

¢, |, match in, V with (z* : M | y® : N)] 5 lq, 1, N{V/y}]

q, |, letrec 4Pz =M in N] SR [q, I, N{(Az* 1letrec f* Bz = M in M)/f}]
g, 0, newtf] ~ [q®0), {x > n+1}, 2]

g, 0, newtt] ~ [q® (1), {z > n+1}, 2]

a|2

ago + B, {w — i}, measz] %5 [ro, 0, £1]
2
ago + Bar, {w — i}, measa] % [r1, 0, tt]
¢, LU @ @ay)] > [l (01 @ @ a)]
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Structural rule

lq, I, M] L 7, i, N]
(g, W1, EIM]] ~ [r, j Wi, EIN]]

where & is any evaluation contexrt generated by the grammar

Eu= []|EM|VEIEM|EQM|V®E|in €| in,. €
| let 22 @ yP = € in M | match &£ with (24 : M | yB : N).
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Extreme derivative

Def. Suppose we have subdistributions p, p;”, w; for k > 0 with the

following properties:
poo= pg g
Ho = pT A+ pg

py o = pa s

and each (i, is stable in the sense that C' +~, for all C' € [, ]. Then we
call p/ := 5", p; an extreme derivative of u, and write © = .

NB: i/ could be a proper subdistribution.
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Example

Consider a Markov chain with three states {s1, s2, s3} and two transitions

s1 — 253 + 353 and s3 — 53. Then 57 = $53.

Let C' be a quantum closure in the Markov chain (CI, —). Then C = [C]
for a unique subdistribution [C].
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Big-step reduction

Cle [¢.,V]lg,1,V]

. LMD " pe [k ik, Vil {[res e N prbrex
ke K

4., M @ NT U >~ (Vi @ )

ke K

(@, L, MUY pi- [, Vie @ Wil {Ires e, (N{Vi /2, Wi /y})] U prbre

ke K

q,1,1et 4 ®yB = M in N] | Zpk,uk
keEK

Lem. [C] = sup{p | C |} pu}
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Linear contextual equivalence

Def. A linear context is a term with a hole, written C(A; A), such that
C[M] is a closed program when the hole is filled in by a term M, where
A > M : A, and the hole lies in linear position.

Def. Linear contextual equivalence is the typed relation ~ given by

A > M ~ N : A if for every linear context C, quantum state ¢ and linking
function [ such that ) > C(A; A) : B, and both [¢,,C[M]]| and [q, [, C[N]]

are total quantum closures,

g, &, Ml = [llg, L, CINI]]
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‘Coinductive proof techniques'
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A Probabilistic Labelled Transition System

i meas

@, L, 11 ® - @ ] LN ¢,[,U(z1 @ - ®@ )] lq,l, ] — [q, [, meas x|

h>V:A—-B OI>W:A

. skip r
.0, skip] — [q. 0.9 .y 2V v

0>imyV:A®B z:A>M:C

[q,1,in; V] EIUELIN g, LY r, M{V/z}]

I-VeoW:A® B x:Ay:B>M:C

eval
0.1, vew 22ty M{v/zwyyy ¢ 1]
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Lifting relations

Def. Let S.T" be two countable sets and R € .S x T" be a binary relation.
The lifted relation R'C D(S) x D(T) is defined by letting p R v iff
u(X) <v(R(X)) for all X C 5.

Here R(X) ={tcT |dsc X. s Rt} and u(X) =) .. u(s).

There are alternative formulations; related to the Kantorovich metric and the

maximum network flow problem. See e.g.

Semantics of

' Probabilistic
' Processes

An Operational Approach
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State-based bisimilarity

Def. C' ~, D iff
o env(C) = env(D);
o [C]~T[DJ;

o if C, D are values then C' =  implies D — v with p ~4' v, and

vice-versa.

Write 0 > M ~g N : Aif [q,1, M] ~ [q,1, N] for any ¢ and [ such that
lq,l, M| and |q, [, N| are both typable quantum closures.

env(p) =) ; Di- trfqv(M)Qiqu for any =), pi - |, i, M;].
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Distribution-based bisimilarity

Def. 1 — pif p = Zsehﬂ 1(s) - ps, where s is determined as follows:

o cither s — i,

. . a . .
e or there is no v with s — v, and in this case we set us = €.

Def. 1 ~4 v iff
o env(u) = env(v);
o [u] ~a[v];

e if 1 and v are value distributions and ;i — p, then v — ¢ for some ¢
with p ~; &, and vice-versa.

Write ) > M ~g N : Aif [[q,1, M]] ~4 [lg,, N]] for any ¢ and [ such that
lq, 1, M| and |q,[, N| are quantum closures.
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~, is finer than ~

S bgt
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Similar behaviour by quantum closures

(0,0, (Ary.meas(H(new £f£f)))z]

[0, ), meas(

Y

(0,0, \y.meas(H(new ££))]

Y

eval

Q[p, V]

H(new £f))]

eval

[ |00)+4|11)

o (x122), (Ary.meas z1)(meas )]

1.7
7
2
1%

[10), (x1), \y.meas 1]

eval

Y

[|1), (x1), A\y.meas z1]

Q[(, V]

eval eval
[0, (2) £f] [0, (Z) tt]
0,0,
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\ Soundness I
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Congruence

Basic idea: Given a relation R, construct a congruence candidate R,
and then show R =R".

29



Howe’s construction

Az A (g1, MR [r,j,N] A [r,j,Ax”".N] R [p,i, L]

A > [q,l,)\xA.M] R [p,i, L]

IA A" > [q,1, M] R [r, §, N]
IA, A" > [q,i, L] RY [r,m, P]
IA A A" > [r,jWm, NP] R [s,n, Q)]

A, A A" (gl Wi, ML) RY [s,7n, Q)]

IA, A > [q,1, M] R? [r,§, N]
IA, A" > [q,i, L] RY [r,m, P]
IAN,A A > [r,jum, N®P] R [s,n,Q]

IA,A A > g lwi, M@ LI R" [s,n, Q)]
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Congruence

Lem. If 0 > [q,1, M] ~," [r, 5, N] then [[g,1, M]] (~s)" [[r, §, N].

Lem. If () > [¢q,1,V] ~," [r,j, W] then we have that [¢,1, V] — 1 implies
[r,7, W] = v and p (NSH)T V.

Consequently, ~, =~ . Similar arguments apply to ~y.
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Soundness

Thm. Both ~, and ~, are included in ~.
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Completeness I
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A simple testing language

The tests: t o= wla-t

Apply a test to a distribution in a reactive pLTS

Pr(p,w) = |p
Pr(u,a-t) = Pr(p,t) where u — p

p="vifVt €T : Pr(ut)= Pr(v,t).
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Characterisation of ~,; by tests

Thm. Let 1 and v be two distributions in a reactive pLT'S. Then p ~g v if
and only if =" v
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Converting a test into a context

Lem. Let A be a type and t a test. There is a context C{* such that
0> CA(0; A) : bit and for every M with ) > M : A, we have

Pr(lg,1,M],t) = |[lg.1,CZ [M]]]

where [g,[, M| and [q,,CZ[M]] are quantum closures for any ¢ and /.
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Full abstraction

Thm. ~ coincides with ~.
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Summary I
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Conclusion

e T'wo notions of bisimilarity for reasoning about higher-order quantum

programs

e Both bisimilarities are sound with respect to the linear contextual

equivalence

e The distribution-based one is complete.
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Future work

A denotational model fully abstract with respect to the linear contextual

equivalence.
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Thank you!
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