On Coinduction and Quantum Lambda Calculi

Yuxin Deng

East China Normal University

(Joint work with Yuan Feng and Ugo Dal Lago)

To appear at CONCUR'15

Outline

- Motivation
- A quantum λ -calculus
- Coinductive proof techniques
- Soundness
- $\bullet\,$ Completeness
- Summary

Motivation

Quantum programming languages

Fruitful attempts of language design, e.g.

- QUIPPER: an expressive functional higher-order language that can be used to program many quantum algorithms and can generate quantum gate representations using trillions of gates. [Green et al. PLDI'13]
- $L[QUi]$: a modular software architecture designed to control quantum hardware - it enables easy programming, compilation, and simulation of quantum algorithms and circuits. [Wecker and Svore. CoRR 2014]

Open problem: Fully abstract denotational semantics wrt operational semantics

Contextual equivalence

An important notion of program equivalence in programming languages. $M \simeq N$ if $\forall C : C[M] \Downarrow \Leftrightarrow C[N] \Downarrow$

An example in linear PCF

$$
f_1 := \text{val}(\lambda x.\text{val}(0) \sqcap \text{val}(1))
$$

$$
f_2 := \text{val}(\lambda x.\text{val}(0)) \sqcap \text{val}(\lambda x.\text{val}(1)).
$$

[Deng and Zhang, TCS, 2015]

An example

$$
f_1 := \text{val}(\lambda x. \text{val}(0) \sqcap \text{val}(1))
$$

$$
f_2 := \text{val}(\lambda x. \text{val}(0)) \sqcap \text{val}(\lambda x. \text{val}(1)).
$$

$$
f_1 \ncong f_2
$$

 $\mathcal{C} := \text{bind } f = [$] in bind $x = f(0)$ in bind $y = f(0)$ in val $(x = y)$.

Linear context?

$$
f_1 := \text{val}(\lambda x.\text{val}(0) \sqcap \text{val}(1))
$$

$$
f_2 := \text{val}(\lambda x.\text{val}(0)) \sqcap \text{val}(\lambda x.\text{val}(1)).
$$

Equivalence under linear contexts.

^A Quantum λ-Calculus

Types

 $A, B, C ::=$ qubit $| A \multimap B | ! (A \multimap B) | 1 | A \otimes B | A \oplus B | A^l$

Terms

 M, N, P ::= x Variables $| \lambda x^A \cdot M | M N$ Abstractions / applications $\text{skip} \mid M; N$ Skip / seq. compositions $M \otimes N$ | let $x^A \otimes y^B = M$ in N Tensor products / proj. $\operatorname{in}_l M \mid \operatorname{in}_r M$ Sums match P with $(x^A : M \mid y^B : N)$ Matches split Split letrec $f^{A\rightarrow B}x = M$ in N Recursions new | meas | U Quantum operators

Values

 $V, W ::= x \mid c \mid \lambda x^A . M \mid V \otimes W \mid \text{in}_l V \mid \text{in}_r W$ where $c \in \{\text{skip}, \text{split}^A, \text{meas}, \text{new}, \text{U}\}.$

As syntactic sugar $\mathsf{bit} = 1 \oplus 1$, $\mathsf{tt} = \mathsf{in}_r$ skip, and $\mathsf{ff} = \mathsf{in}_l$ skip.

Typing rules

Quantum closure

Def. A quantum closure is a triple $[q, l, M]$ where

- q is a normalized vector of \mathbb{C}^{2^n} , for some integer $n \geq 0$. It is called the quantum state;
- M is a term, not necessarily closed;
- l is a linking function that is an injective map from $fqv(M)$ to the set $\{1, \ldots, n\}.$

A closure $[q, l, M]$ is total if l is surjective. In that case we write l as $\langle x_1, \ldots, x_n \rangle$ if $dom(l) = \{x_1, \ldots, x_n\}$ and $l(x_i) = i$ for all $i \in \{1 \ldots n\}.$ Non-total closures are allowed. E.g. $\left[\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \{x \mapsto 1\},x\right]$

Small-step reduction axioms

$$
[q, l, (\lambda x^{A}.M)V] \stackrel{\lambda}{\rightsquigarrow} [q, l, M\{V/x\}]
$$
\n
$$
[q, l, \det x^{A} \otimes y^{B} = V \otimes W \text{ in } N] \stackrel{\lambda}{\rightsquigarrow} [q, l, N\{V/x, W/y\}]
$$
\n
$$
[q, l, \text{skip}; N] \stackrel{\lambda}{\rightsquigarrow} [q, l, N]
$$
\n
$$
[q, l, \text{match in}_{l} V \text{ with } (x^{A}: M \mid y^{B}: N)] \stackrel{\lambda}{\rightsquigarrow} [q, l, M\{V/x\}]
$$
\n
$$
[q, l, \text{match in}_{r} V \text{ with } (x^{A}: M \mid y^{B}: N)] \stackrel{\lambda}{\rightsquigarrow} [q, l, N\{V/y\}]
$$
\n
$$
[q, l, \text{letter } f^{A \multimap B} x = M \text{ in } N] \stackrel{\lambda}{\rightsquigarrow} [q, l, N\{(\lambda x^{A}.\text{letter } f^{A \multimap B} x = M \text{ in } M)/f\}]
$$
\n
$$
[q, \emptyset, \text{new } \text{ff}] \stackrel{\lambda}{\rightsquigarrow} [q \otimes |0\rangle, \{x \mapsto n+1\}, x]
$$
\n
$$
[q, \emptyset, \text{new } t] \stackrel{\lambda}{\rightsquigarrow} [q \otimes |1\rangle, \{x \mapsto n+1\}, x]
$$
\n
$$
[\alpha q_{0} + \beta q_{1}, \{x \mapsto i\}, \text{meas } x] \stackrel{|\alpha|^{2}}{\rightsquigarrow} [r_{0}, \emptyset, \text{ff}]
$$
\n
$$
[q, l, U(x_{1} \otimes \cdots \otimes x_{k})] \stackrel{\lambda}{\rightsquigarrow} [r, l, (x_{1} \otimes \cdots \otimes x_{k})]
$$

Structural rule

$$
\frac{[q, l, M] \stackrel{p}{\leadsto} [r, i, N]}{[q, j \uplus l, \mathcal{E}[M]] \stackrel{p}{\leadsto} [r, j \uplus i, \mathcal{E}[N]]}
$$

where $\mathcal E$ is any *evaluation context* generated by the grammar

$$
\mathcal{E} ::= \big[\big] \big| \mathcal{E} M \big| V \mathcal{E} \big| \mathcal{E}; M \big| \mathcal{E} \otimes M \big| V \otimes \mathcal{E} \big| \mathop{\mathrm{in}}\nolimits_{l} \mathcal{E} \big| \mathop{\mathrm{in}}\nolimits_{r} \mathcal{E} \big| \mathop{\mathrm{let}}\nolimits x^{A} \otimes y^{B} = \mathcal{E} \mathop{\mathrm{in}}\nolimits M \big| \mathop{\mathrm{match}}\nolimits \mathcal{E} \mathop{\mathrm{with}}\nolimits (x^{A} : M \big| y^{B} : N).
$$

Extreme derivative

Def. Suppose we have subdistributions μ , μ_k^{\rightarrow} , μ_k^{\times} for $k \geq 0$ with the following properties:

$$
\mu = \mu_0^{\rightarrow} + \mu_0^{\times}
$$

\n
$$
\mu_0^{\rightarrow} \rightarrow \mu_1^{\rightarrow} + \mu_1^{\times}
$$

\n
$$
\mu_1^{\rightarrow} \rightarrow \mu_2^{\rightarrow} + \mu_2^{\times}
$$

\n
$$
\vdots
$$

and each μ_k^{\times} is stable in the sense that $C \nleftrightarrow$, for all $C \in [\mu_k^{\times}]$. Then we call $\mu' := \sum_{k=0}^{\infty} \mu_k^{\times}$ an extreme derivative of μ , and write $\mu \Rightarrow \mu'$.

NB: μ' could be a proper subdistribution.

Example

Consider a Markov chain with three states $\{s_1, s_2, s_3\}$ and two transitions $s_1 \rightarrow \frac{1}{2}\overline{s_2} + \frac{1}{2}\overline{s_3}$ and $s_3 \rightarrow \overline{s_3}$. Then $\overline{s_1} \Rightarrow \frac{1}{2}\overline{s_2}$.

Let C be a quantum closure in the Markov chain (Cl, \rightarrow) . Then $\overline{C} \Rightarrow \llbracket C \rrbracket$ for a unique subdistribution $\llbracket C \rrbracket$.

Big-step reduction

$$
\frac{\overline{C \Downarrow \varepsilon}}{C \Downarrow \varepsilon} \frac{\overline{[q, l, V] \Downarrow [q, l, V]}}{[q, l, V] \Downarrow \overline{[q, l, V]}}
$$
\n
$$
\frac{[q, l, M] \Downarrow \sum_{k \in K} p_k \cdot [\overline{r_k, i_k, V_k]} \{ [r_k, i_k, N] \Downarrow \mu_k \}_{k \in K}}{[q, l, M \otimes N] \Downarrow \sum_{k \in K} p_k (V_k \otimes \mu_k)}
$$
\n
$$
\frac{[q, l, M] \Downarrow \sum_{k \in K} p_k \cdot [\overline{r_k, i_k, V_k \otimes W_k]} \{ [r_k, i_k, (N\{V_k/x, W_k/y\})] \Downarrow \mu_k \}_{k \in K}}
$$
\n
$$
[q, l, \det x^A \otimes y^B = M \text{ in } N] \Downarrow \sum_{k \in K} p_k \mu_k
$$

Lem. $[C] = \sup\{\mu \mid C \Downarrow \mu\}$

Linear contextual equivalence

Def. A linear context is a term with a hole, written $\mathcal{C}(\Delta; A)$, such that $\mathcal{C}[M]$ is a closed program when the hole is filled in by a term M , where $\Delta \triangleright M : A$, and the hole lies in linear position.

Def. Linear contextual equivalence is the typed relation \simeq given by $\Delta \triangleright M \simeq N : A$ if for every linear context C, quantum state q and linking function l such that $\emptyset \rhd \mathcal{C}(\Delta; A): B$, and both $[q, l, \mathcal{C}[M]]$ and $[q, l, \mathcal{C}[N]]$ are total quantum closures,

 $\begin{array}{rcl} \parallel\llbracket[q,l,\mathcal{C}[M]]\rrbracket\rrbracket\end{array} = \begin{array}{rcl} \parallel\llbracket[q,l,\mathcal{C}[N]]\rrbracket\end{array}$

Coinductive proof techniques

^A Probabilistic Labelled Transition System

$$
\frac{[q, l, x_1 \otimes \cdots \otimes x_n] \xrightarrow{\text{if } q, l, \text{U}(x_1 \otimes \cdots \otimes x_n)]} \qquad \frac{[q, l, x] \xrightarrow{\text{in eas }} [q, l, \text{meas } x]}{[q, \emptyset, \text{skip}] \xrightarrow{\text{skip } \text{skip } p} [q, \emptyset, \Omega]} \qquad \frac{\emptyset \rhd V : A \rhd B \qquad \emptyset \rhd W : A}{[q, l, V] \xrightarrow{\text{``0[r, W]} } [q, l \oplus r, VW]} \qquad \frac{\emptyset \rhd \text{in } V : A \oplus B \qquad x : A \rhd M : C}{[q, l, \text{in } V] \xrightarrow{\text{``1[r, M]} } [q, l \oplus r, M \{V/x\}]} \qquad \frac{\emptyset \rhd V \otimes W : A \otimes B \qquad x : A, y : B \rhd M : C}{[q, l, V \otimes W] \xrightarrow{\text{``0[r, M]} } [l \oplus r, M \{V/x, W/y\}]} \qquad C \xrightarrow{\text{``eval}} [C]
$$

Lifting relations

Def. Let S, T be two countable sets and $\mathcal{R} \subseteq S \times T$ be a binary relation. The lifted relation $\mathcal{R}^{\dagger} \subseteq \mathcal{D}(S) \times \mathcal{D}(T)$ is defined by letting $\mu \mathcal{R}^{\dagger} \nu$ iff $\mu(X) \leq \nu(\mathcal{R}(X))$ for all $X \subseteq S$.

Here $\mathcal{R}(X) = \{t \in T \mid \exists s \in X \ldotp s \mathcal{R} t\}$ and $\mu(X) = \sum_{s \in X} \mu(s)$.

There are alternative formulations; related to the Kantorovich metric and the maximum network flow problem. See e.g.

State-based bisimilarity

Def. $C \sim_{s} D$ iff

- $env(C) = env(D);$
- $\llbracket C \rrbracket \sim_s^{\dagger} \llbracket D \rrbracket;$
- if C, D are values then $C \stackrel{a}{\longrightarrow} \mu$ implies $D \stackrel{a}{\longrightarrow} \nu$ with $\mu \sim_s^{\dagger} \nu$, and vice-versa.

Write $\emptyset \triangleright M \sim_s N : A$ if $[q, l, M] \sim_s [q, l, N]$ for any q and l such that $[q, l, M]$ and $[q, l, N]$ are both typable quantum closures.

 $env(\mu) = \sum_i p_i \cdot tr_{fav(M)} q_i q_i^{\dagger}$ for any $\mu = \sum_i p_i \cdot [q_i, l_i, M_i].$

Distribution-based bisimilarity

Def. μ $\stackrel{a}{\longrightarrow} \rho$ if $\rho = \sum_{s \in [\mu]} \mu(s) \cdot \mu_s$, where μ_s is determined as follows:

- \bullet either s $\stackrel{a}{\longrightarrow} \mu_s$
- or there is no ν with s $\stackrel{a}{\longrightarrow} \nu$, and in this case we set $\mu_s = \varepsilon$.

 $\mathbf{Def.}$ $\mu \sim_d \nu$ iff

- $env(\mu) = env(\nu);$
- $\bullet~~[\![\mu]\!] \sim_d ~[\![\nu]\!];$
- if μ and ν are value distributions and μ $\stackrel{a}{\longrightarrow}\rho$, then ν $\stackrel{a}{\longrightarrow} \xi$ for some ξ with $\rho \sim_d \xi$, and vice-versa.

Write $\emptyset \triangleright M \sim_d N : A$ if $[[q, l, M]] \sim_d [[q, l, N]]$ for any q and l such that $[q, l, M]$ and $[q, l, N]$ are quantum closures.

 \sim_s is finer than \sim_d

s $\not\sim_s t$

Similar behaviour by quantum closures

Soundness

Congruence

Basic idea: Given a relation \mathcal{R} , construct a congruence candidate \mathcal{R}^H , and then show $\mathcal{R} = \mathcal{R}^H$.

Howe's construction

Congruence

Lem. If $\emptyset \triangleright [q, l, M] \sim s^H [r, j, N]$ then $[[q, l, M]] \in s^H$ [†] $[[r, j, N]]$.

Lem. If $\emptyset \triangleright [q, l, V] \sim s^H [r, j, W]$ then we have that $[q, l, V] \stackrel{a}{\longrightarrow} \mu$ implies $[r, j, W] \stackrel{a}{\longrightarrow} \nu$ and $\mu (\sim_s^H)^{\dagger} \nu$.

Consequently, $\sim_s = \sim_s^H$. Similar arguments apply to \sim_d .

Soundness

Thm. Both \sim_s and \sim_d are included in \simeq .

$\fbox{Complexeness}$

A simple testing language

 $\begin{array}{lll} \text{The tests:} & \mathbf{t} \ ::= \ \omega \ | \ a \cdot \mathbf{t} \end{array}$

Apply a test to a distribution in a reactive pLTS

$$
Pr(\mu, \omega) = |\mu|
$$

$$
Pr(\mu, a \cdot t) = Pr(\rho, t) \text{ where } \mu \xrightarrow{a} \rho
$$

 $\mu =^{\mathcal{T}}\nu \text{ iff } \forall \texttt{t} \in \mathcal{T} : Pr(\mu,\texttt{t}) = Pr(\nu,\texttt{t}).$

Characterisation of \sim_d by tests

Thm. Let μ and ν be two distributions in a reactive pLTS. Then $\mu \sim_d \nu$ if and only if $\mu = \tau$ ν .

Converting ^a test into ^a context

Lem. Let A be a type and t a test. There is a context C_t^A such that $\emptyset \rhd \mathcal{C}^A_*$ $\mathcal{L}_{\mathbf{t}}^A(\emptyset;A)$: bit and for every M with $\emptyset \rhd M : A$, we have

> $Pr([q,l,M],\mathtt{t})~=~|[\hspace{-1.5pt}[q,l,\mathcal{C}^{A}_\mathtt{t}$ $\mathbf{t}^A[M]]$

where $[q, l, M]$ and $[q, l, C_{t}^{A}]$ $\mathfrak{t}^A[M]$ are quantum closures for any q and l.

Full abstraction

Thm. \simeq coincides with \sim_d .

Summary

Conclusion

- Two notions of bisimilarity for reasoning about higher-order quantum programs
- Both bisimilarities are sound with respect to the linear contextual equivalence
- The distribution-based one is complete.

Future work

A denotational model fully abstract with respect to the linear contextual equivalence.

Thank you!