On Coinduction and Quantum Lambda Calculi

Yuxin Deng

East China Normal University

(Joint work with Yuan Feng and Ugo Dal Lago)

To appear at CONCUR'15

Outline

- Motivation
- A quantum λ -calculus
- Coinductive proof techniques
- Soundness
- Completeness
- Summary

Motivation

Quantum programming languages

Fruitful attempts of language design, e.g.

- QUIPPER: an expressive functional higher-order language that can be used to program many quantum algorithms and can generate quantum gate representations using trillions of gates. [Green et al. PLDI'13]
- LIQUi|: a modular software architecture designed to control quantum hardware it enables easy programming, compilation, and simulation of quantum algorithms and circuits. [Wecker and Svore. CoRR 2014]

Open problem: Fully abstract denotational semantics wrt operational semantics

Contextual equivalence

An important notion of program equivalence in programming languages. $M \simeq N$ if $\forall \mathcal{C} : \mathcal{C}[M] \Downarrow \Leftrightarrow \mathcal{C}[N] \Downarrow$ An example in linear PCF

$$f_1 := \operatorname{val}(\lambda x \cdot \operatorname{val}(0) \sqcap \operatorname{val}(1))$$

$$f_2 := \operatorname{val}(\lambda x \cdot \operatorname{val}(0)) \sqcap \operatorname{val}(\lambda x \cdot \operatorname{val}(1)).$$

[Deng and Zhang, TCS, 2015]

An example

$$\begin{array}{rcl} f_1 & := & \operatorname{val}(\lambda x \, . \, \operatorname{val}(0) \sqcap \, \operatorname{val}(1)) \\ f_2 & := & \operatorname{val}(\lambda x \, . \, \operatorname{val}(0)) \sqcap \, \operatorname{val}(\lambda x \, . \, \operatorname{val}(1)). \\ & & f_1 \not\simeq f_2 \end{array}$$

 $\mathcal{C} := \texttt{bind} \ f = [_] \ \texttt{in bind} \ x = f(0) \ \texttt{in bind} \ y = f(0) \ \texttt{in val}(x = y).$

Linear context?

$$f_1 := \operatorname{val}(\lambda x \cdot \operatorname{val}(0) \sqcap \operatorname{val}(1))$$
$$f_2 := \operatorname{val}(\lambda x \cdot \operatorname{val}(0)) \sqcap \operatorname{val}(\lambda x \cdot \operatorname{val}(1)).$$

Equivalence under linear contexts.

A Quantum λ -Calculus

Types

 $A,B,C::=\mathsf{qubit}\mid A\multimap B\mid !(A\multimap B)\mid 1\mid A\otimes B\mid A\oplus B\mid A^l$

Terms

 $M, N, P \quad ::= \quad x$ Variables $\mid \lambda x^A . M \mid M N$ Abstractions / applications | skip | M; NSkip / seq. compositions $M\otimes N\mid$ let $x^A\otimes y^B=M$ in NTensor products / proj. $\operatorname{in}_{l} M \mid \operatorname{in}_{r} M$ Sums match P with $(x^A : M \mid y^B : N)$ Matches ${\tt split}^A$ Split letrec $f^{A \multimap B} x = M$ in NRecursions new | meas | U Quantum operators

Values

 $V, W ::= x \mid c \mid \lambda x^{A}.M \mid V \otimes W \mid \operatorname{in}_{l} V \mid \operatorname{in}_{r} W$ where $c \in \{\operatorname{skip}, \operatorname{split}^{A}, \operatorname{meas}, \operatorname{new}, \operatorname{U}\}.$

As syntactic sugar bit = $1 \oplus 1$, tt = in_r skip, and ff = in_l skip.

Typing rules

A linear	
$!\Delta, x: A \vdash x: A$	$!\Delta, x : !(A \multimap B) \vdash x : A \multimap B$
$\Delta, x: A \vdash M: B$	$!\Delta, \Delta' \vdash M : A \multimap B !\Delta, \Delta'' \vdash N : A$
$\Delta \vdash \lambda x^A . M : A \multimap B$	$!\Delta,\Delta',\Delta''\vdash MN:B$
$!\Delta,\Delta'\vdash M:A$	$!\Delta,\Delta'\vdash M:B$
$!\Delta,\Delta' \vdash \mathtt{in}_l \ M: A$	$\oplus B$ $!\Delta, \Delta' \vdash \mathtt{in}_r M : A \oplus B$
$!\Delta, \Delta' \vdash P : A \oplus B !\Delta, \Delta'', x : A \vdash M : C !\Delta, \Delta'', y : B \vdash N : C$	
$!\Delta,\Delta',\Delta'' \vdash \texttt{match}\; P \; \texttt{with}\; (x^A:M \mid y^B:N):C$	
$!\Delta, f: !(A\multimap B), x: A \vdash$	$M: B !\Delta, \Delta', f: !(A \multimap B) \vdash N: C$
$!\Delta,\Delta' \vdash \texttt{letrec} \ f^{A \multimap B} x = M \ \texttt{in} \ N:C$	
	U of arity n
$!\Delta \vdash \texttt{new}: \texttt{bit} \multimap \texttt{qubit}$ $!\Delta \vdash \texttt{me}$	as : qubit — bit $!\Delta \vdash \mathtt{U} : qubit^{\otimes n} \multimap qubit^{\otimes n}$

Quantum closure

Def. A quantum closure is a triple [q, l, M] where

- q is a normalized vector of \mathbb{C}^{2^n} , for some integer $n \ge 0$. It is called the quantum state;
- *M* is a term, not necessarily closed;
- *l* is a linking function that is an injective map from *fqv(M)* to the set {1,...,n}.

A closure [q, l, M] is total if l is surjective. In that case we write l as $\langle x_1, \ldots, x_n \rangle$ if $dom(l) = \{x_1, \ldots, x_n\}$ and $l(x_i) = i$ for all $i \in \{1 \ldots n\}$. Non-total closures are allowed. E.g. $\left[\frac{|00\rangle + |11\rangle}{\sqrt{2}}, \{x \mapsto 1\}, x\right]$

Small-step reduction axioms

$$\begin{split} & [q, l, (\lambda x^{A}.M)V] \stackrel{1}{\rightarrow} [q, l, M\{V/x\}] \\ & [q, l, \operatorname{let} x^{A} \otimes y^{B} = V \otimes W \text{ in } N] \stackrel{1}{\rightarrow} [q, l, N\{V/x, W/y\}] \\ & [q, l, \operatorname{skip}; N] \stackrel{1}{\rightarrow} [q, l, N] \\ & [q, l, \operatorname{match} \operatorname{in}_{l} V \text{ with } (x^{A}: M \mid y^{B}: N)] \stackrel{1}{\rightarrow} [q, l, M\{V/x\}] \\ & [q, l, \operatorname{match} \operatorname{in}_{r} V \text{ with } (x^{A}: M \mid y^{B}: N)] \stackrel{1}{\rightarrow} [q, l, N\{V/y\}] \\ & [q, l, \operatorname{letrec} f^{A \to B} x = M \text{ in } N] \stackrel{1}{\rightarrow} [q, l, N\{(\lambda x^{A}.\operatorname{letrec} f^{A \to B} x = M \text{ in } M)] \stackrel{1}{\rightarrow} [q, l, N\{(\lambda x^{A}.\operatorname{letrec} f^{A \to B} x = M \text{ in } M)] \stackrel{1}{\rightarrow} [q, l, N\{(\lambda x^{A}.\operatorname{letrec} f^{A \to B} x = M \text{ in } M)] \stackrel{1}{\rightarrow} [q, 0, \operatorname{newtf}] \stackrel{1}{\rightarrow} [q \otimes |0\rangle, \{x \mapsto n + 1\}, x] \\ & [q, 0, \operatorname{newtf}] \stackrel{1}{\rightarrow} [q \otimes |1\rangle, \{x \mapsto n + 1\}, x] \\ & [\alpha q_{0} + \beta q_{1}, \{x \mapsto i\}, \operatorname{meas} x] \stackrel{|\alpha|^{2}}{\rightarrow} [r_{0}, 0, \operatorname{ff}] \\ & [\alpha q_{0} + \beta q_{1}, \{x \mapsto i\}, \operatorname{meas} x] \stackrel{|\beta|^{2}}{\rightarrow} [r_{1}, 0, \operatorname{tt}] \\ & [q, l, \operatorname{U}(x_{1} \otimes \cdots \otimes x_{k})] \stackrel{1}{\rightarrow} [r, l, (x_{1} \otimes \cdots \otimes x_{k})] \end{split}$$

Structural rule

$$\frac{[q, l, M] \stackrel{p}{\rightsquigarrow} [r, i, N]}{[q, j \uplus l, \mathcal{E}[M]] \stackrel{p}{\rightsquigarrow} [r, j \uplus i, \mathcal{E}[N]]}$$

where \mathcal{E} is any *evaluation context* generated by the grammar

$$\begin{split} \mathcal{E} &::= \quad [] \mid \mathcal{E} M \mid V \mathcal{E} \mid \mathcal{E}; M \mid \mathcal{E} \otimes M \mid V \otimes \mathcal{E} \mid \operatorname{in}_{l} \mathcal{E} \mid \operatorname{in}_{r} \mathcal{E} \\ &\mid \operatorname{let} x^{A} \otimes y^{B} = \mathcal{E} \text{ in } M \mid \operatorname{match} \mathcal{E} \text{ with } (x^{A} : M \mid y^{B} : N). \end{split}$$

Extreme derivative

Def. Suppose we have subdistributions μ , μ_k^{\rightarrow} , μ_k^{\times} for $k \ge 0$ with the following properties:

$$\mu = \mu_0^{\rightarrow} + \mu_0^{\times}$$
$$\mu_0^{\rightarrow} \rightarrow \mu_1^{\rightarrow} + \mu_1^{\times}$$
$$\mu_1^{\rightarrow} \rightarrow \mu_2^{\rightarrow} + \mu_2^{\times}$$
$$\vdots$$

and each μ_k^{\times} is stable in the sense that $C \not\leadsto$, for all $C \in [\mu_k^{\times}]$. Then we call $\mu' := \sum_{k=0}^{\infty} \mu_k^{\times}$ an extreme derivative of μ , and write $\mu \Rightarrow \mu'$.

NB: μ' could be a proper subdistribution.

Example

Consider a Markov chain with three states $\{s_1, s_2, s_3\}$ and two transitions $s_1 \rightarrow \frac{1}{2}\overline{s_2} + \frac{1}{2}\overline{s_3}$ and $s_3 \rightarrow \overline{s_3}$. Then $\overline{s_1} \Rightarrow \frac{1}{2}\overline{s_2}$.

Let C be a quantum closure in the Markov chain (Cl, \rightarrow) . Then $\overline{C} \Rightarrow \llbracket C \rrbracket$ for a unique subdistribution $\llbracket C \rrbracket$.

Big-step reduction

$$\begin{split} \overline{C \Downarrow \varepsilon} & \overline{[q,l,V] \Downarrow \overline{[q,l,V]}} \\ \frac{[q,l,M] \Downarrow \sum_{k \in K} p_k \cdot \overline{[r_k,i_k,V_k]} \quad \{[r_k,i_k,N] \Downarrow \mu_k\}_{k \in K}}{[q,l,M \otimes N] \Downarrow \sum_{k \in K} p_k(V_k \otimes \mu_k)} \\ \frac{[q,l,M] \Downarrow \sum_{k \in K} p_k \cdot \overline{[r_k,i_k,V_k \otimes W_k]} \quad \{[r_k,i_k,(N\{V_k/x,W_k/y\})] \Downarrow \mu_k\}_{k \in K}}{[q,l,\operatorname{let} x^A \otimes y^B = M \operatorname{in} N] \Downarrow \sum_{k \in K} p_k \mu_k} \end{split}$$

Lem. $\llbracket C \rrbracket = \sup \{ \mu \mid C \Downarrow \mu \}$

Linear contextual equivalence

Def. A linear context is a term with a hole, written $\mathcal{C}(\Delta; A)$, such that $\mathcal{C}[M]$ is a closed program when the hole is filled in by a term M, where $\Delta \triangleright M : A$, and the hole lies in linear position.

Def. Linear contextual equivalence is the typed relation \simeq given by $\Delta \triangleright M \simeq N : A$ if for every linear context C, quantum state q and linking function l such that $\emptyset \triangleright C(\Delta; A) : B$, and both [q, l, C[M]] and [q, l, C[N]]are total quantum closures,

 $|\llbracket[q,l,\mathcal{C}[M]]]| = |\llbracket[q,l,\mathcal{C}[N]]]|$

Coinductive proof techniques

A Probabilistic Labelled Transition System

$$\begin{split} \hline [q,l,x_1\otimes\cdots\otimes x_n] \xrightarrow{\mathbf{i}\,\mathbf{U}} [q,l,\mathbf{U}(x_1\otimes\cdots\otimes x_n)] & \overline{[q,l,x]} \xrightarrow{\mathbf{i}\,\mathbf{meas}} [q,l,\mathbf{meas}\,x] \\ \\ \hline \hline [q,l,\mathbf{x}] \xrightarrow{\mathbf{skip}} [q,\emptyset,\mathbf{\Omega}] & \overline{[q,l,v]} \xrightarrow{[q,l] \otimes \mathbb{D}\,\mathbb{V}:A \longrightarrow B} \quad \emptyset \triangleright \mathbb{W}:A \\ \hline \hline [q,l,v] \xrightarrow{\mathbb{O}[r,W]} [q,l \uplus r,VW] \\ \\ \hline \hline \underbrace{\emptyset \triangleright \mathbf{in}_l \,\mathbb{V}:A \oplus B} \quad x:A \triangleright M:C \\ \hline \hline [q,l,\mathbf{in}_l \,\mathbb{V}] \xrightarrow{\mathbf{1}[r,M]} [q,l \uplus r,M\{\mathbb{V}/x\}]} \\ \\ \hline \underbrace{\emptyset \triangleright \mathbb{V} \otimes \mathbb{W}:A \otimes B} \quad x:A,y:B \triangleright M:C \\ \hline \hline [q,l,V \otimes W] \xrightarrow{\otimes [r,M]} [l \uplus r,M\{\mathbb{V}/x,W/y\}]} \quad \hline C \xrightarrow{eval} [C]] \end{split}$$

Lifting relations

Def. Let S, T be two countable sets and $\mathcal{R} \subseteq S \times T$ be a binary relation. The lifted relation $\mathcal{R}^{\dagger} \subseteq \mathcal{D}(S) \times \mathcal{D}(T)$ is defined by letting $\mu \mathcal{R}^{\dagger} \nu$ iff $\mu(X) \leq \nu(\mathcal{R}(X))$ for all $X \subseteq S$.

Here $\mathcal{R}(X) = \{t \in T \mid \exists s \in X. \ s \ \mathcal{R} \ t\}$ and $\mu(X) = \sum_{s \in X} \mu(s)$.

There are alternative formulations; related to the Kantorovich metric and the maximum network flow problem. See e.g.

State-based bisimilarity

Def. $C \sim_s D$ iff

- env(C) = env(D);
- $\llbracket C \rrbracket \sim_s^{\dagger} \llbracket D \rrbracket;$
- if C, D are values then $C \xrightarrow{a} \mu$ implies $D \xrightarrow{a} \nu$ with $\mu \sim_s^{\dagger} \nu$, and vice-versa.

Write $\emptyset \triangleright M \sim_s N : A$ if $[q, l, M] \sim_s [q, l, N]$ for any q and l such that [q, l, M] and [q, l, N] are both typable quantum closures.

 $env(\mu) = \sum_{i} p_i \cdot tr_{fqv(M)} q_i q_i^{\dagger}$ for any $\mu = \sum_{i} p_i \cdot [q_i, l_i, M_i].$

Distribution-based bisimilarity

Def. $\mu \xrightarrow{a} \rho$ if $\rho = \sum_{s \in \lceil \mu \rceil} \mu(s) \cdot \mu_s$, where μ_s is determined as follows:

- either $s \xrightarrow{a} \mu_s$
- or there is no ν with $s \xrightarrow{a} \nu$, and in this case we set $\mu_s = \varepsilon$.

Def. $\mu \sim_d \nu$ iff

- $env(\mu) = env(\nu);$
- $\llbracket \mu \rrbracket \sim_d \llbracket \nu \rrbracket;$
- if μ and ν are value distributions and $\mu \xrightarrow{a} \rho$, then $\nu \xrightarrow{a} \xi$ for some ξ with $\rho \sim_d \xi$, and vice-versa.

Write $\emptyset \triangleright M \sim_d N : A$ if $\llbracket [q, l, M] \rrbracket \sim_d \llbracket [q, l, N] \rrbracket$ for any q and l such that [q, l, M] and [q, l, N] are quantum closures.

 \sim_s is finer than \sim_d

 $s \not\sim_s t$

Similar behaviour by quantum closures

Soundness

Congruence

Basic idea: Given a relation \mathcal{R} , construct a congruence candidate \mathcal{R}^H , and then show $\mathcal{R} = \mathcal{R}^H$.

Howe's construction

$\Delta, x: A \triangleright [q, l, M] \mathcal{R}^{H} [r, j, N] \Delta \triangleright [r, j, \lambda x^{A}.N] \mathcal{R} [p, i, L]$
$\Delta \rhd [q, l, \lambda x^A . M] \mathcal{R}^H [p, i, L]$
$!\Delta, \Delta' ho [q, l, M] \mathcal{R}^H [r, j, N]$
$!\Delta, \Delta'' \rhd [q, i, L] \mathcal{R}^H [r, m, P]$
$!\Delta, \Delta', \Delta'' \rhd [r, j \uplus m, NP] \ \mathcal{R} \ [s, n, Q]$
$!\Delta, \Delta', \Delta'' \rhd [q, l \uplus i, ML] \mathcal{R}^H [s, n, Q]$
$!\Delta, \Delta' \rhd [q, l, M] \ \mathcal{R}^H \ [r, j, N]$
$!\Delta, \Delta'' \rhd [q, i, L] \mathcal{R}^H [r, m, P]$
$!\Delta,\Delta',\Delta'' \rhd [r,j \uplus m,N \otimes P] \ \mathcal{R} \ [s,n,Q]$
$!\Delta, \Delta', \Delta'' \rhd [q, l \uplus i, M \otimes L] \ \mathcal{R}^H \ [s, n, Q]$

Congruence

Lem. If $\emptyset \succ [q, l, M] \sim_s^H [r, j, N]$ then $\llbracket [q, l, M] \rrbracket (\sim_s^H)^{\dagger} \llbracket [r, j, N] \rrbracket$.

Lem. If $\emptyset \triangleright [q, l, V] \sim_s^H [r, j, W]$ then we have that $[q, l, V] \xrightarrow{a} \mu$ implies $[r, j, W] \xrightarrow{a} \nu$ and $\mu (\sim_s^H)^{\dagger} \nu$.

Consequently, $\sim_s = \sim_s^H$. Similar arguments apply to \sim_d .

Soundness

Thm. Both \sim_s and \sim_d are included in \simeq .

Completeness

A simple testing language

The tests: $t ::= \omega \mid a \cdot t$

Apply a test to a distribution in a reactive pLTS

$$\begin{array}{lll} Pr(\mu,\omega) &=& |\mu| \\ Pr(\mu,a\cdot {\tt t}) &=& Pr(\rho,{\tt t}) \mbox{ where } \mu \xrightarrow{a} \rho \end{array}$$

 $\mu =^{\mathcal{T}} \nu \text{ iff } \forall t \in \mathcal{T} : Pr(\mu, t) = Pr(\nu, t).$

Characterisation of \sim_d by tests

Thm. Let μ and ν be two distributions in a reactive pLTS. Then $\mu \sim_d \nu$ if and only if $\mu = \tau \nu$.

Converting a test into a context

Lem. Let A be a type and t a test. There is a context C_t^A such that $\emptyset \triangleright C_t^A(\emptyset; A)$: bit and for every M with $\emptyset \triangleright M : A$, we have

$$Pr([q, l, M], t) = \| \llbracket [q, l, \mathcal{C}^A_t[M]] \rrbracket \|$$

where [q, l, M] and $[q, l, C_t^A[M]]$ are quantum closures for any q and l.

Full abstraction

Thm. \simeq coincides with \sim_d .

Summary

Conclusion

- Two notions of bisimilarity for reasoning about higher-order quantum programs
- Both bisimilarities are sound with respect to the linear contextual equivalence
- The distribution-based one is complete.

Future work

A denotational model fully abstract with respect to the linear contextual equivalence.

Thank you!